《孙子算经》卷下第19题进有气中,你不知其数,前人取半钟仁三分取一,
- 教育综合
- 2022-09-06 12:58:40
《孙子算经》中的“物不知其数“问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物
这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件? 变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。 这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。孙子算经的原文和译文
《孙子算经》 约成书于四、五世纪,作者生平和编写年代都不清楚。现在传本的《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法则,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 具有重大意义的是卷下第26题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:『二十三』”。《孙子算经》不但提供了答案,而且还孙子算经‘物不知其数’是怎么解决的?
《孙子算经》解这道题目的“术文”和答案是:“三三数之剩二,置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十,并之,得二百三十三,以二百十减之,即得。”
当时虽已有了答案23,但它的系统解法是秦九韶在《数书九章・大衍求一术》中给出的。大衍求一术是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题。
扩展资料
这种“物不知数(孙子)问题”,在我国古代流传的算法名称很多。宋朝周宓称它为“鬼谷算”、“隔墙算”(之所以称“鬼谷算”,大概是因为它与传说中的哲学家鬼谷子有某些关系);13世纪的大数学家杨辉则称它为“剪管术”。
《孙子算经》不但提供了答案,而且还给出了解法。南宋大数学家秦九韶则进一步开创了对一次同余式理论的研究工作,推广“物不知数”的问题。
德国数学家高斯[K.F. Gauss.公元1777-1855年]于公元1801年出版的《算术探究》中明确地写出了上述定理。
公元1852年,英国基督教士伟烈亚士[Alexander Wylie公元1815-1887年]将《孙子算经》“物不知数”问题的解法传到欧洲。
公元1874年马蒂生[L.Mathiesen]指出孙子的解法符合高斯的定理,从而在西方的数学史里将这一个定理称为“中国的剩余定理”[Chinese remainder theorem]。
在我国古代算书《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之
“今有物不知其数,三三数之余二,五五数之余三,七七数之余 二,问物几何?” 这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件? 变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。 这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。「鬼谷算题」:「今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?」
翻译为:现有一物不知道它的数量,每三个数它最后剩二,每五个数它最后剩三,每七个数它最后剩二,问这是什么数?原文出自作者和编写年不详的《孙子算经》。
原文:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:二十三。
译文:现有一物不知道它的数量,每三个数它最后剩二,每五个数它最后剩三,每七个数它最后剩二,问这是什么数?答:二十三。
解析:其中70是5、7公倍数中被3除余1的数;21是3、7公倍中被5除余1的数;15是3、5公倍数中被7除余1的数。105则是3、5、7的最小公倍数。如果得数较大,可以连续减去105。 依此,上题可列式为: 70×2+21×3+15×2=233 ,233-105-105=23。
扩展资料:
传本的《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。
在中国古算书中,《孙子算经》一直在我国数史占有重要的地位,其中的“盈不足术”、“荡杯问题”等都有着许多有趣而又不乏技巧算术程式。