-a,-b一定是共生有理数对吗
- 教育综合
- 2022-10-19 07:56:14
共生有理数对是什么意思?
使等式a-b=ab+1成立的一对有理数a,b为共生有理数对,记为(a,b)。数学上,有理数是一个整数a和一个正整数b的比。有理数是整数和分数的集合,整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。
将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数由来:
“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
共生有理数对有哪些?
共生有理数对有:1,2,3,-1,-2,-3;39+[-23]+0+[-16]= 0;[-18]+29+[-52]+60= 19;[-3]+[-2]+[-1]+0+1+2= -3。
使等式a-b=ab+1成立的一对有理数a,b为共生有理数对,记为(a,b)。数学上,有理数是一个整数a和一个正整数b的比。有理数是整数和分数的集合,整数也可看做是分母为一的分数。
相关信息:
有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
共生有理数对有哪些
使等式a-b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b)。