双阶乘无穷级数
- 教育综合
- 2022-10-19 17:43:09
阶乘的公式是什么
n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
扩展资料
双阶乘用“m!!”表示。
当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:
当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。
当 m 是负偶数时,m!!不存在。
任何大于等于1 的自然数n 阶乘表示方法:
资料来源:阶乘_百度百科
sinh,cosh与其它三角函数的关系?
关系如下:
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
扩展资料
泰勒展开式又叫幂级数展开法
实用幂级数:
ex= 1+x+x2/2!+x3/3!+…+xn/n!+…,x∈R
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2×3) + (1×3)x/(2×4×5) + (1×3×5)x/(2×4×6×7)…+(2k+1)!!×x2k+1/(2k!!×(2k+1))+…, x∈(-1,1)(!!表示双阶乘)
arccos x = π/2 -[x + x3/(2×3) + (1×3)x/(2×4×5) + (1×3×5)x/(2×4×6×7)……], x∈(-1,1)
arctan x = x - x3/3 + x/5 -…, x∈(-∞,1)
sinh x = x+x3/3!+x/5!+…+x2k-1/(2k-1)!+…, x∈R
cosh x = 1+x2/2!+x/4!+…+x2k/(2k)!+…, x∈R
arcsinh x =x - x3/(2×3) + (1×3)x/(2×4×5) -(1×3×5)x/(2×4×6×7)…, x∈(-1,1)
arctanh x = x + x3/3 + x/5 + …, x∈(-1,1)
在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
参考资料来源:百度百科-三角函数公式
参考资料来源:百度百科-三角函数
高一数学必修四三角函数总结
三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角这两个式子怎么合起来啊?
上面是双阶乘
下面是无穷级数
不过这个级数是发散的
这都是高数的内容
你们学这些干嘛?
如下图:
双阶乘
n的阶乘公式
n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
扩展资料
双阶乘用“m!!”表示。
当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:
当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。
当 m 是负偶数时,m!!不存在。
任何大于等于1 的自然数n 阶乘表示方法: