当前位置:首页 > 教育综合 > 正文

天线特性与发射(接收)电磁波极化特性之间的有什么关系

电磁波极化与天线接收效率之间的关系

电磁波极化与天线接收效率之间的极化关系。根据查询相关资料信息,接收与发射天线之间的极化关系,会直接影响接收讯号的品质,无线麦克风接收机天线若固定为垂直极化,当电磁波的极化方向与接收天线的极化方向不一致时,会降低接收效率,而当二者的极化方向正交时,天线则几乎接收不到电磁信号。

天线是如何辐射出各种极化波的?

天线极化是描述天线辐射电磁波矢量空间指向的参数。由于电场与磁场有恒定的关系,故一般都以电场矢量的空间指向作为天线辐射电磁波的极化方向。

天线辐射出的是电磁波,电磁波在空间传播是有不同的极化方式的,通常的极化方式有线极化,圆极化和椭圆极化。线极化可看做是电磁场矢量在一条直线上来回振动向前传播,圆极化或椭圆极化可看做是电磁场矢量绕着传播方向沿圆形或椭圆形路径转动向前传播。实际中绝对的圆极化电磁波几乎没有,通常将轴比小于3的电磁波视为圆极化。所谓极化天线,就是要使天线辐射出的电磁场满足一定的极化特性。

电磁波极化的介绍

电磁波电场强度的取向和幅值随时间而变化的性质,在光学中称为偏振。如果这种变化具有确定的规律,就称电磁波为极化电磁波(简称极化波)。如果极化电磁波的电场强度始终在垂直于传播方向的(横)平面内取向,其电场矢量的端点沿一闭合轨迹移动,则这一极化电磁波称为平面极化波。电场的矢端轨迹称为极化曲线,并按极化曲线的形状对极化波命名。
极化的类型
对于单一频率的平面极化波,极化曲线是一椭圆(称极化椭圆),故称椭圆极化波。顺传播方向看去,若电场矢量的旋向为顺时针,符合右螺旋法则,称右旋极化波;若旋向为逆时针,符合左螺旋法则,称左旋极化波。按极化椭圆的几何参数(见图),可直观地对椭圆极化波作定量描述,即轴比 ρ(长轴与短轴之比,
(4)
对比均匀无耗传输线问题,若ρ表示电压驻波比、Γ 表示电压反射系数、Z表示归一化输入阻抗,则 (3)、(4)两式恰是传输线的基本关系式。于是,圆图可用作分析和计算传输线的各种图解工具。特别是各种阻抗圆图如史密斯圆图、卡特圆图等,也可以应用于电磁波极化参数的分析和计算,并相应地改称为极化圆图。
此外,根据轴比ρ、极化方向角ψ和极化比|Z|、线极化分量相位差(δH-δV)之间的关系式,还可以建立单位球表面各点与各种椭圆极化状态之间的一一对应关系。这种标有极化状态的单位球称为庞加莱球,极化圆图实质上就是这个球面上各种极化参数的等值线在赤道平面上的投影。
极化的利用
发射和接收电磁波的天线都具有确定的极化性质,可根据其用作发射天线时在最强辐射方向上的电磁波极化而命名。例如,水平或垂直极化天线辐射水平或垂直极化波;右旋或左旋(椭)圆极化天线辐射右旋或左旋(椭)圆极化波。通常为了在收发天线之间实现最大的功率传输,应采用极化性质相同的发射天线和接收天线,这种配置条件称为极化匹配。有时为了避免对某种极化波的感应,采用极化性质与之正交的天线,如垂直极化天线与水平极化波正交;右旋圆极化天线与左旋圆极化波正交。这种配置条件称为极化隔离。
此外,在遥感、雷达目标识别等信息检测系统中,散射波的极化性质还能提供幅度、相位信息之外的附加信息。极化
在电动力学中,极化(或偏振)是波(如光和其他电磁辐射)的一个重要特性。与纵波如常见的声波不同,电磁波是三维的横波,正是由于其矢量特性,从而产生出极化这一现象。

天线是什么原理呢

天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。

当导体上通以高频电流时,在其周围空间会产生电场 与磁场。按电磁场在空间的分布特性,可分为近区,中间区, 远区。设R为空间一点距导体的距离,在时的区域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。在的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。

必须指出,当导线的长度 L 远小于波长 λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

发射天线正是利用辐射场的这种性质,使传送的信号经过发射天线后能够充分地向空间辐射。如何使导体成为一个有效辐射体导系统呢?这里我们先分析一下传输线上的情况,在平行双线的传输线上为了使只有能量的传输而没有辐射,必须保证两线结构对称,线上对应点电流大小和方向相反,且两线间的距离《π。要使电磁场能有效地辐射出去,就必须破坏传输线的这种对称性,如采用把二导体成一定的角度分开,或是将其中一边去掉等方法,都能使导体对称性破坏而产生辐射。



如图TX,图中将开路传输或距离终端π/4处的导体成直状分开,此时终端导体上的电流已不是反相而是同相了,从而使该段导体在空间点的辐射场同相迭加,构成一个有效的辐射系统。这就是最简单,最基本的单元天线,称为半波对称振子天线,其特性阻抗为75Ω。电磁波从发射天线辐射出来以后,向四面传播出去,若电磁波传播的方向上放一对称振子,则在电磁波的作用下,天线振子上就会产生感应电动势。如此时天线与接收设备相连,则在接收设备输入端就会产生高频电流。这样天线就起着接收作用并将电磁波转化为高频电流,也就是说此时天线起着接收天线的作用,接收效果的好坏除了电波的强弱外还取决于天线的方向性和半边对称振子与接收设备的匹配

天线方向特性)(专业的进)

1、阻抗特性

天线应能将高频电流能量尽可能多地转变为电磁波能量,这首先要求天线是一个良好的“电磁开放系统”,其次要求天线与发射机(源)匹配或与接收机(负载)匹配。

2、方向特性

天线应使电磁波尽可能集中于所需的方向上,或对所需方向的来波有最大的接收。

3、极化特性

天线应能发射或接收规定极化的电磁波。

4、带宽特性

天线应有足够的工作频带。

扩展资料:

天线方向原理:

天线是这样一个部件:将电路中的高频振荡电流或馈线上的导行波有效地转变为某种极化的空间电磁波,并保证电磁波按所需的方向传播(发射状态),或将来自空间特定方向的某种极化的电磁波有效地转变为电路中高频振荡电波或馈线上的导行波(接收状态)。

各种无线电设备对天线方向性的要求是千差万别的,例如精密测量雷达要求天线辐射的电磁波集中在极小的空间立体角内,称为“针状波束”;通信基站和电视发射台则要求电磁波在水平面内方向均匀辐射,即具有“全向性”,通常用方向图和一些有关参数来描述不同的方向性。

参考资料来源:百度百科-天线方向性

展开全文阅读