高通量PCR的检测步骤有哪些。
- 教育综合
- 2023-12-12 07:57:16
pcr实验步骤
pcr实验步骤如下:
1.初始化步骤。这仅对热启动PCR必不可少。此步骤将溶液加热至94-98°C,以激活DNA聚合酶。该步骤的时间取决于所使用的聚合酶。
2.变性步骤。DNA是双链分子,DNA扩增需要引物与单链DNA模板相互作用。在此步骤中,将反应混合物加热至94-98°C并保持20-30秒,以破坏两条链之间的氢键并生成单链DNA分子。此时进入PCR循环。
3.退火步骤。变性后,反应混合物中的DNA模板是单链的。由于引物与DNA模板互补,当反应温度降低到50-65℃时,引物会与模板序列匹配,互补碱基之间形成氢键。退火温度取决于所用引物的Tm,一般比引物Tm低3-5℃左右。该步骤将持续约20-40秒以完全退火,然后聚合酶将定位到引物-模板杂交体以开始DNA组装。
4.伸长步骤。在此步骤中,DNA聚合酶开始合成DNA,因此温度应为DNA聚合酶的最适温度。一般选择72°C,但有些酶在68°C时效果更好。
这一步与体内DNA复制非常相似,DNA聚合酶将dNTPs添加到引物中,以5'到3'方向与模板互补,最终产生新的双链DNA片段。延伸时间取决于目标DNA片段的长度和DNA聚合酶的能力。一般来说,DNA聚合酶每60秒产生一千个碱基。
5.2~4步称为一个循环,每循环一次,目标片段量翻倍。一个PCR过程使用30-35个循环。在PCR循环的早期,PCR产物以指数速率积累,而在PCR循环的后期,随着dNTPs、引物的减少和DNA聚合酶在变性温度下的失活,反应减慢,PCR速率逐渐下降。
6.最终伸长率。30-35个循环结束后,在68-74℃的温度下最终延伸约5-10分钟,以充分延伸剩余的单链DNA。
7.贮存。最终产品可以在PCR机器中维持温度在4-10°C。
高通量测序的步骤?
当然,首先地提取出您想要测序的东西,比如RNA、DNA 。再就是建库-测序-分析。建库需要将序列片段化、加接头、PCR。不同的业务有细微的差别,比如RNA要先反转录成cDNA等等。然后就是上机测序了!最后就是数据分析了。数据分析分为流程分析(基本分析)和个性分析(根据老师课题分析)。这些以后呢,就是利用数据写进文章准备发文章吧!PCR的完整操作步骤是什么?
首先在PCR仪中设定程序:一般是94度变性5min,之后“94度变性、退火(不同引物温度不同)、72度”延伸共30-35个循环,再72度延伸10min,最后hold16度即可。反应体系一般有20微升或50微升,由上下游引物、buffer、dNTP、模板、Taq酶和水等组成,配好后放入PCR仪中按设定程序进行即可。pcr的技术的主要步骤及pcr引物设计的一般原则有哪些
PCR的技术的主要步骤及PCR引物设计的一般原则分述如下:
PCR的技术的主要步骤:
1、DNA变性:(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA。
2、退火:(60℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。
3、延伸:(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的3′端开始以从5′→3′端的方向延伸,合成与模板互补的DNA链。
每一循环经过变性、退火和延伸,DNA含量即增加一倍。现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。
2、引物设计的基本原则
1、引物长度:15-30bp,常用为20bp左右。
2、引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C 过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列参照。
3、引物内部不应出现互补序列。
4、两个引物之间不应存在互补序列,尤其是避免3 ′端的互补重叠。
5、引物与非特异扩增区的序列的同源性不要超过70%,引物3′末端连续8个碱基在待扩增区以外不能有完全互补序列,否则易导致非特异性扩增。
6、引物3‘端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,最佳选择是G和C。
7、引物的5 ′端可以修饰。如附加限制酶位点,引入突变位点,用生物素、荧光物质、地高辛标记,加入其它短序列,包括起始密码子、终止密码子等。
扩展资料
PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR是一种体外DNA 扩增技术,是在模板DNA、引物和4种脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促合反应,将待扩增的DNA片段与其两侧互补的寡核苷酸链引物经“高温变性——低温退火——引物延伸”三步反应的多次循环,使DNA片段在数量上呈指数增加,从而在短时间内获得我们所需的大量的特定基因片段。
在环境检测中,靶核酸序列往往存在于—个复杂的混合物如细胞提取液中,且含量很低,对于探测这种复杂群体中的特异微生物或某个基因,杂交就显得不敏感。使用PCR技术可将靶序列放大几个数量级,再用探针杂交探测对被扩增序列作定性或定量研究分析微生物群体结构。PCR技术常与其他技术结合起来使用, 如RT-PCR、竞争PCR、巢式PCR、RAPf)、ARDRA等。
第一代PCR就是常见的定性PCR技术,它采用普通PCR仪来对靶基因进行扩增,采用琼脂糖凝胶电泳来对产物进行分析。第二代PCR就是荧光定量PCR技术(Real-Time PCR,qPCR),它通过在反应体系中加入能指示反应进程的荧光试剂来实时监测扩增产物的积累,借助荧光曲线的Cq值来定量起始靶基因的浓度。
第三代PCR技术--数字PCR(Digital PCR,dPCR,Dig-PCR),是一种全新的对核酸进行检测和定量的方法。它采用直接计数目标分子而不再依赖任何校准物或外标,即可确定低至单拷贝的待检靶分子的绝对数目。
PCR芯片技术PCR仪器发展的趋势之一变得更加微型化,PCR芯片就是在这种趋势下诞生的。PCR芯片就是在微型的载体上进行PCR反应,是微型化的PCR仪。芯片PCR不仅节省了大量反应试剂因此降低了实验成本,还有助于提高反应速度。
参考资料:百度百科-PCR技术
PCR实验原理和操作步骤是什么?
实验方法原理
①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;
②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;
③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。
重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。
典型的PCR包括高温变性、低温退火、中温延伸三个步骤,通过将这一套过程不断循环,使DNA得以成百万倍的扩增。
扩展资料
PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。
这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。
它不仅是DNA分析最常用的技术,而且在DNA重组与表达、基因结构分析和功能检测中具有重要的应用价值。
PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应做准备;
②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;
③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。
重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。
参考资料来源:百度百科-pcr扩增
下一篇
返回列表