当前位置:首页 > 教育综合 > 正文

图二极管的伏安曲线中,虚线A是什么半导体材料,实线B是什么半导体材料

半导体二极管伏安特性曲线

半导体二极管的核心是PN结,它的特性就是PN结的特性——单向导电性。用实验的方法,在二极管的阳极和阴极两端加上不同极性和不同数值的电压,同时测量流过二极管的电流值,就可得到二极管的伏一安特性曲线。

当正向电压很低时,正向电流几乎为零,P89LPC954FBD这是因为外加电压的电场还不能克服PN结内部的内电场,内电场阻挡了多数载流子的扩散运动,此时二极管呈现高电阻值,基本上还是处于截止的状态。

二极管伏安特性曲线

二极管伏安特性曲线加在PN结两端的电压和流过二极管的电流之间的关系曲线称为伏安特性曲线。

正向特性:u>0的部分称为正向特性。

反向特性:u<0的部分称为反向特性。

反向击穿:当反向电压超过一定数值U(BR)后,反向电流急剧增加,称之反向击穿。

势垒电容:耗尽层宽窄变化所等效的电容称为势垒电容Cb。

变容二极管:当PN结加反向电压时,Cb明显随u的变化而变化,而制成各种变容二极管。如图5所示。

以上内容参考:百度百科-伏安特性曲线

二极管伏安特性曲线特点是什么?

二极管伏安特性曲线特点:二极管的伏安特性是非线性的,象一条二次曲线某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。因为温度可以决定电阻的大小。

二极管:

二极管是用半导体材料(硅、硒、锗等)制成的一种电子器件。它具有单向导电性能,即给二极管阳极和阴极加上正向电压时,二极管导通。当给阳极和阴极加上反向电压时,二极管截止。因此,二极管的导通和截止,则相当于开关的接通与断开。二极管是最早诞生的半导体器件之一,其应用非常广泛。

半导体二极管伏安特性曲线

半导体二极管的核心是PN结,它的特性就是PN结的特性——单向导电性。用实验的方法,在二极管的阳极和阴极两端加上不同极性和不同数值的电压,同时测量流过二极管的电流值,就可得到二极管的伏一安特性曲线。该曲线是非线性的,如图1-13所示。正向特性和反向特性的特点如下。


1.正向特性
当正向电压很低时,正向电流几乎为零,P89LPC954FBD这是因为外加电压的电场还不能克服PN结内部的内电场,内电场阻挡了多数载流子的扩散运动,此时二极管呈现高电阻值,基本上还是处于截止的状态。如图1-13所示,正向电压超过二极管开启电压Uon(又称为死区电压)时,电流增长较快,二极管处于导通状态。开启电压与二极管的材料和工作温度有关,通常硅管的开启电压为Uon=0.5V(A点),锗管为Uon=0.1V(A'点)。二极管导通后,二极管两端的导通压降很低,硅管为0.6~0.7V,锗管为0.2~0.3V如图1-13中B、B'点。
2.反向特性
在分析PN结加上反向电压时,已知少数载流子的漂移运动形成反向电流。因少数载子数量少,且在一定温度下数量基本维持不变,因此,厦向电压在一定范围内增大时,反向电流极微小且基本保持不变,等于反向饱和电流Is。
当反向电压增大到UBR时,外电场能把原子核外层的电子强制拉出来,使半导体内载流子的数目急剧增加,反向电流突然增大,二极管呈现反向击穿的现象如图1-13中D、D'点。二极管被反向击穿后,就失去了单向导电性。二极管反向击穿又分为电击穿和热击穿,利用电击穿可制成稳压管,而热击穿将引起电路故障,使用时一定要注意避免二极管发生反向热击穿的现象。
二极管的特性对温度很敏感。实验表明,当温度升高时,二极管的正向特性曲线将向纵轴移动,开启电压及导通压降都有所减小,反向饱和电流将增大,反向击穿电压也将减小。

二极管的伏安特性曲线是什么?

二极管的伏安特性曲线的特征:

1、二极管具有单向导电性。

2、 二极管的伏安特性具有非线性。

3、二极管的伏安特性与温度有关。

在二极管两端加一定数值的电压,就有一定的电流流过二极管。如果在直角坐标图上以X轴(横轴)表示电压,以Y轴(纵轴)表示电流,就可以在坐标图上画出与上述电压、电流数值相对应的一点,这一点的横坐标是电压数值,纵坐标是电流数值。

改变二极管上所加电压的数值,就可以得到对应的电流数值,同时可以在坐标上得到许多对应的点,将这些点连起来,就画出了二极管的电流随二极管上所加电压变化而变化的曲线,这条曲线就叫二极管的伏安特性曲线。

以上内容解释:

当在二极管的两端加上正向电压时,二极管中就会有电流流过,电流的大小与加在两端电压的大小有关,如曲线中的OA段。但由于所加电压较小,不足以克服结电场对晶体中载流子扩散的阻挡作用,因而正向电流增加很小。

当外加电压继续增加到一定数值时(硅管约0.7V,锗管为0.3V),结电场几乎被完全抵消,因而使二极管内阻变小,正向电流急剧增加,如图中曲线的AB段所示,曲线变得很陡,电流的增大和电压的增加成线性关系。这时,对应于B点的电流IF称为二极管的额定工作电流,即实际工作中的最大允许电流。与B点对应的电压VF称为二极管的(额定电流时的)正向管压降。

二极管PN结的特性

如图3—2—1(a)所示,P—N结具有单向导向的特性,常用图3—2—1(b)所示的符合表示。根据制作二极管时所用半导体材料的不同,又分为锗二极管、硅二极管等。二极管的典型伏安特性曲线如图3—2—2(a)所示,同图(b)和(c)分别是它的正、反向测试电路。当二极管两端的电压U为零时,电流I也应为零,所以特性曲线从坐标原点开始。 图3—2—1 图3—2—2 由特性曲线看出,当二极管为正向接法时,随着电压U的逐渐增加,电流I也增加。但在开始一段,由于外加电压很低,这时P—N结的内电场对载流子的运动仍起阻挡作用,基本上没有电流流过P—N结,这一段称为死区。硅管的死区电压约为0~0.5V(图中OB)之间
展开全文阅读

上一篇
遇见(植物)作文

下一篇
返回列表