怎样用一元一次方程解韩信点兵的问题
- 教育综合
- 2023-03-16 07:56:48
一个数除3余2除5余2除7余2,怎样用一元一次方程来求这个数
由于这个数【并不是】一个确定的数,而是有【无数个】可能。即使追加条件:最小是多少?那也是一个【不等式】关系,所以这样的问题应该【不能】简单的用一元一次方程来解。一个数除3余2除5余2除7余2,怎样用一元一次方程来求这个数
列方程好像不大好解吧,这在数学史上是极有名的问题,外国人一般把它称为“中国剩余定理”。至于它的算法,在《孙子算经》上就已经有了说明,而且后来还流传着这么一道歌诀: 三人同行七十稀, 五树梅花廿一枝, 七子团圆正半月, 除百零五便得知。 这就是韩信点兵的计算方法,它的意思是:凡是用3个一数剩下的余数,将它用70去乘(因为70是5与7的倍数,而又是以3去除余1的数);5个一数剩下的余数,将它用21去乘(因为21是3与7的倍数,又是以5去除余1的数);7个一数剩下的余数,将它用15去乘(因为15是3与5的倍数,又是以7去除余1的数),将这些数加起来,若超过105,就减掉105,如果剩下来的数目还是比韩信点兵的计算公式是什么?
古代时候有个《孙子算经》有几句乘法口诀:三人同行七十稀, 五树梅花廿一枝, 七子团圆正半月, 除百零五便得知。 意思是 3人一数剩下余数*70。5人一数剩下余数*21。七人一数剩下余数*15。然后+105.加到你感觉对啦就知道了。因为已知死了四五百了。
所以算法是这样的:2*70+4*21+6*15=314人
314+105+105+105+105+105+105+105=1049人。
1、韩信点兵:
韩信点兵的成语来源淮安民间传说。常与多多益善搭配。寓意越多越好。
2、成语故事:
淮安民间传说着一则故事——“韩信点兵”,其次有成语“韩信点兵,多多益善”。
韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人。韩信很快说出人数:1049。
3、来源:
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。这样的问题,也有人称为“韩信点兵”。它形成了一类问题,也就是初等数论中的解同余式。
“韩信点兵”的数学问题
民间传说着一则故事——“韩信点兵”。 秦朝末年,楚汉相争。有一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神关于韩信点兵的运算方法
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中的解同余式。 ① 有一个数,除以3余2,除以4余1,问这个数除以12余几? 解:除以3余2的数有:2, 5, 8, 11,14, 17, 20, 23… 它们除以12的余数是:2,5,8,11,2,5,8,11… 除以4余1的数有:1, 5, 9, 13, 17, 21, 25, 29… 它们除以12的余数是:1, 5, 9, 1, 5,展开全文阅读
上一篇
皇极经世极数,通数,分数
下一篇
返回列表