当前位置:首页 > 教育综合 > 正文

t的n次方的拉式变换是怎么求的?

拉氏变换常用公式是什么?

如下图:

拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。 拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。

相关信息:

函数变换对和运算变换性质  利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。

拉普拉斯变化的存在性:为使F(s)存在,积分式必须收敛。有如下定理:

如因果函数f(t)满足:(1)在有限区间可积,(2)存在σ0使|f(t)|e-σt在t→∞时的极限为0,则对于所有σ大于σ0,拉普拉斯积分式绝对且一致收敛。

t的拉普拉斯变换是多少

拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)通过关系式

(式中-st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。

是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算。

再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。

拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。

扩展资料

引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及综合控制系统的校正装置提供了可能性。
拉普拉斯变换在工程学上的应用:应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。

在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。

参考资料来源:百度百科-拉普拉斯变换

拉氏变换常用公式是什么?

拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)通过关系式:

(式中-st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。



拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。

拉氏变换在大部份的应用中都是对射的,最常见的f(t)和F(s) 组合常印制成表,方便查阅。拉氏变换和傅立叶变换有关,不过傅立叶变换将一个函数或是信号表示为许多弦波的叠加,属于「频域变换」。

而拉氏变换则是将一个函数表示为许多矩的叠加,属于「时域变换」。拉氏变换的好处就是能够将复杂的积分与微分的问题,变换成比较容易计算的代数方法,为什么要进行变换?因为很多时候频域变换比时域变换直观得多。因此,拉氏变换较多被用于解决:

(1).常数系数的线性微分或积分方程式。

(2).分析线性非时变系统的输入输出信号。

实务上,拉氏变换在物理及工程上常用来分析线性非时变系统,可用来分析电子电路、谐振子、光学仪器及机械设备,在这些分析中,拉氏变换可以作时域和频域之间的转换,在时域中输入和输出都是时间的函数,在频域中输入和输出则是复变角频率的函数。

f(t)=t^t的拉普拉斯变换是什么,怎么求解?

用积分定理:若f(t)=积分g(t)dt,则F(s)=G(s)/s+f(0-)/s 阶跃响应为1/s,原函数为1 对阶跃响应的原函数积分,得t的象函数为1/s^2 对t积分,得t^2/2的象函数为1/s^3 则t^2的象函数为2/s^3 不懂追问

求f=t^2的拉普拉斯变换,求过程啊

f=t^2的拉普拉斯变换过程如下:

F(s)=∫(0-∞)f(t)e^(-st)dt

=∫(0-∞)(t^2)e^(-st)dt

设u=st,t=u/s,dt=(1/s)

则:F(s)=∫(0-∞)((u/s)^2)e^(-u)(1/s)

=(1/s^3)∫(0-∞)(u^2)e^(-u)

∫(0-∞)(u^2)e^(-u)du=2!

所以F(s)=2/s^3

拉普拉斯逆变换的公式:

对于所有的t>0,f(t)= mathcal ^ left=frac int_ ^ F(s)' e'ds,c' 是收敛区间的横坐标值,是一个实常数且大于所有F(s)' 的个别点的实部值。

如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t)。

只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。

展开全文阅读

上一篇
∫dx/√1+2x+3x²

下一篇
返回列表