当前位置:首页 > 教育综合 > 正文

在距阵中,如果一行乘以若干倍,结果怎样

矩阵中某一行乘以一个数,结果怎么样?

结果是得到一个新的矩阵,这个矩阵和原矩阵是等价的,也就是他们的秩和最大线性无关组是一样的。

因为矩阵的某一行乘以一个非零数是做初等变换,得到一个新的矩阵,初等变换不改变矩阵的秩,得到的新矩阵和原矩阵等价。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

扩展资料:

线性变换及对称

线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。

内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。

描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。

还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。

矩阵每一行都乘一个数 矩阵会变化吗?

一个数乘以矩阵,矩阵里面的每个数都要乘, 这是恒等运算。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。

扩展资料

矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。

求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。

参考资料来源:百度百科-矩阵

矩阵乘法如何计算?详细步骤!

回答:

此题2行2列矩阵乘以2行3列矩阵。

所得的矩阵是:2行3列矩阵

最后结果为: |1 3 5|

|0 4 6|

拓展资料

1、确认矩阵是否可以相乘。只有第一个矩阵的列的个数等于第二个矩阵的行的个数,这样的两个矩阵才能相乘。

图示的两个矩阵可以相乘,因为第一个矩阵,矩阵A有3列,而第二个矩阵,矩阵B有3行。


2、计算结果矩阵的行列数。画一个空白的矩阵,来代表矩阵乘法的结果。矩阵A和矩阵B相乘得到的矩阵,与矩阵A有相同的行数,与矩阵B有相同的列数。你可以先画出白格来代表结果矩阵中的行列数。

矩阵A有2行,所以结果矩阵也有2行。

矩阵B有2列,所以结果矩阵也有2列。

最终的结果矩阵就有2行2列。


3、计算第一个“点”。要计算矩阵中的第一个“点”,你需要用第一个矩阵第一行的第一个数乘以第二个矩阵第一列的第一个数,第一行的第二个数乘以第一列的第二个数,第一行的第三个数乘以第一列的第三个数,然后将这三个结果加到一起,得到第一个点。先来计算一下结果矩阵中第二行第二列的数,下面是算法:

6 x -5 = -30

1 x 0 = 0

2 x 2 = -4

-30 + 0 + (-4) = -34

结果是-34,对应了矩阵最右下角的位置。

在你计算矩阵乘法时,结果所处的行列位置要满足,行和第一个矩阵的行相同,列和第二个矩阵的列相同。比如,你用矩阵A最下面一行的数乘以矩阵B最右一列的数,得到的结果是-34,所以-34应该是结果矩阵中最右下角的一个数。

4、计算第二个“点”。比如计算最左下角的数,你需要用第一个矩阵最下面一行的数乘以第二个矩阵最左列的数,然后再把结果相加。具体计算方法和上面一样。

6 x 4 = 24

1 x (-3) = -3

(-2) x 1 = -2

24 + (-3) + (-2) = 19

结果是-19,对应矩阵左下角的位置。


5、在计算剩下的两个“点”。要计算左上角的数,用矩阵A的最上面一行的数乘以矩阵B左侧一列的数,下面是具体算法:

2 x 4 = 8

3 x (-3) = -9

(-1) x 1 = -1

8 + (-9) + (-1) = -2

结果是-2,对应的位置是左上角。

要计算右上角的数,用矩阵A的最上面一行的数乘以矩阵B右侧一列的数,下面是具体算法:

2 x (-5) = -10

3 x 0 = 0

(-1) x 2 = -2

-10 + 0 + (-2) = -12

结果是-12,对应的位置是右上角。


6、检查相应的数字是否出现在正确的位置。19在左下角,-34在右下角,-2在左上角,-12在右上角。

矩阵一行可以×一个数吗??比如这个第一行能×-1得下面那个吗

可以。

矩阵的初等行变换,既包括某行乘以非零常数

某行加减另一行乘以非零常数

这都不会影响整个矩阵的性质

这里第一行乘以-1显然就是初等行变换

扩展资料:

性质1:行列互换,行列式不变

性质2:一数乘行列式的一行就相当于这个数乘此行列式

性质3:如果行列式中有两行相同,那么行列式为0,所谓两行相同,即两行对应的元素都相等

性质4:如果行列式中,两行成比例,那么该行列式为0

性质5:把一行的倍数加到另一行,行列式不变

性质6:对换行列式中两行的位置,行列式反号

参考资料来源:百度百科-初等变换

矩阵的一行同时乘一个数,矩阵不变吗

不是! 根据《矩阵相等》的定义,此时矩阵【会】(但也不一定,比如若那一行乘以一)改变。但,各种《初等变换》(包括这个)【都】不改变《矩阵的秩》。
展开全文阅读