请问2138944π等于多少
- 教育综合
- 2024-03-12 07:57:21
请问π的数值是多少?
1π=3.14,2π=6.28,3π=9.42,4π=12.56,5π=15.7,6π=18.84,7π=21.98,8π=25.12,9π=28.26,10π=31.4。
11π=35.45,12π=37.68,13π=40.83,14π=43.96,15π=47.1,16π=50.24,17π=53.38。
18π=56.52,19π=59.66,20π=62.8,21π=65.94,22π=69.08,23π=72.22,24π=75.36。
25π=78.5,26π=81.64,27π=84.78,28π=87.92,29π=91.06,30π=94.2,31π=97.34。
32π=100.48,33π=103.62,34π=106.76,35π=109.9,36π=113.04,37π=116.18,38π=119.32,39π=122.46,40π=125.6。
来历:历史上的π首次出现于埃及。1858年,苏格兰一位古董商偶然发现了写在古埃及莎草纸(古埃及人广泛采用的书写介质)上的π的数值。
古代巴比伦人计算出π的数值为3。但是希腊人还想进一步计算出π的精确数值。
于是他们在一个圆内绘出一个多边形,这个多边形的边越多,其形状也就越接近于圆。
希腊人称这种计算方法叫“竭尽法”。事实上这也确实让不少数学家精疲力竭。
阿基米德的几何计算结果的寿命要长一些,他通过一个九十六边形估算出π的数值在3至3.17之间。
在以后的700年间,这个数值一直都是最精确的数值,没有人能够取得进一步的成就。
到了公元5世纪,中国数学和天文学家祖冲之和他的儿子在一个圆里绘出了有24576条边的多边形。
算出圆周率值在3.1415926和3.1415927之间,这样才将π的数值又向前推进了一步。
π等于多少?
圆周率用希腊字母π(读作pài)表示,是一个常数,约等于3.141592653,是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。
扩展资料:
历史上最马拉松式的人手π值计算,其一是德国的鲁道夫·范·科伊伦(Ludolph van Ceulen),他几乎耗尽了一生的时间,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolphine number。
其二是英国的威廉·山克斯(William Shanks),他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。
π等于多少??
1、1π=3.14、2π=6.28、3π=9.42、5Pπ=12.56、6π=15.7、7π=18.84、8π=21.98、9π=25.12、10π=31.4。
2、π约等于3.141592654。
3、圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。
4、它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。
5、即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
扩展资料:
每年3月14日为圆周率日,“终极圆周率日”则是1592年3月14日6时54分,(因为其英式记法为“3/14/15926.54”,恰好是圆周率的十位近似值。)和3141年5月9日2时6分5秒(从前往后,3.14159265)
7月22日为圆周率近似日(英国式日期记作22/7,看成圆周率的近似分数)
有数学家认为应把"真正的圆周率"定义为2π,并将其记为τ(发音:tau)。
2019年3月14日,谷歌宣布日裔前谷歌工程师爱玛(EmmaHarukaIwao)在谷歌云平台的帮助下,计算到圆周率小数点后31.4万亿位,准确的说是31415926535897位,比2016年创下的纪录又增加数万亿位。
据了解,爱玛的团队使用了一个名为ycruncher的程序,能将π计算到小数点后数万亿位。该程序由谷歌云平台计算引擎上运行的25个虚拟机驱动。
而2016年纪录的创造者皮特(PeterTrueb)是用一台电脑计算出来的。这项计算需要170TB的数据,与整个美国国会图书馆印刷藏品数据量大致相同,爱玛经过大约4个月的计算才打破了此前的世界纪录。
π等于多少?
数学中“π”是一个无限不循环小数,约等于3.14,以50位为例,数值如下是:3.14159265358979323846264338327950288419716939937510……
圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.141592653),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592653便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
π的由来介绍:
π最早发源于希腊词汇περιφρεια(peripheria),即边缘,边界之意。尽管四大古文明中早有它的身影,π真正作为一个通用常数被定义仍然要回溯到17世纪。
1748年,数学家欧拉通过在他的著作《无穷小分析引论》中定义并使用π,才真正将它带进了数学界的认识中。可能是因为定义简单以及在数学公式中随处可见,π在流行文化中的出现频率及地位远远高于其他数学常数。
数学中π等于多少
π是一个无理数,所以不能直接表示出来。
圆周率(π):3.14159 26535 89793 23846 2643383279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 0938446095 50582 23172 53594 08128 48111 74502 84102 70193 85211.........(约等于3.141592654),通常用3.14来表示π的数值。
而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
圆周率()一般定义为一个圆形的周长()与直径()之比:,或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形,的值都是一样,这样就定义出常数。
扩展资料
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
参考资料:百度百科——π
下一篇
返回列表