什么是偏微分方程的混合问题
- 教育综合
- 2024-07-18 12:59:51
lny=x^2+c y=?
lny=x^2+c y==C·e^(x^2)。
解答过程如下:lny=x^2+c,y=e^(x^2+c),y=e^c·e^(x^2),设C=e^c,y=C·e^(x^2)。
微分方程:对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解(general solution)。对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。
偏微分方程:
微分方程的自变量有两个或以上,且方程式中有未知数对自变量的偏微分。
偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。
有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中,这种偏微分方程则称为混合型。
偏微分方程
偏微分方程是数学中的一个重要分支,它是描述自然现象和物理现象的数学模型。偏微分方程通常用于描述一些变量随时间、空间等因素的变化规律。它们可以用来解决许多重要的实际问题,如流体力学、电磁学、热传导、量子力学等领域的问题。
偏微分方程可以分为几种类型,包括:
1. 椭圆型偏微分方程:用于描述稳态问题,如静电场、静磁场等。
2. 抛物型偏微分方程:用于描述热传导、扩散、波动等问题。
3. 双曲型偏微分方程:用于描述波动、震荡等问题。
解决偏微分方程的方法包括分离变量法、变换法、数值方法等。在实际应用中,偏微分方程的求解通常需要结合数值方法和计算机模拟来进行。
偏微分方程是什么?
偏微分方程的起源 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系总结偏微分方程的解法
可分为两大方面:解析解法和数值解法。 其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。 数值解法又可以分为最常见的有三种:差分法、有限体积法、有限元法。其中,差分法是最普遍最通用的方法。 扩展资料 偏微分方程示例 二阶线性与非线性偏微分方程始终是重要的研究对象。 这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。 近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题双曲型偏微分方程的解法及相关问题
在求解双曲型方程或研究其解的性质时,特征超曲面及次特征线起着重要的作用。一个超曲面S:φ(t,x)=0,如果在其上成立就称它是方程(4)的一个特征超曲面。对于双曲型方程,任一特征超曲面均由次特征线组成,而次特征线t=t(τ),x=x(τ)由下述常微分方程组满足附加条件(5)的解所给出。由过一点p(t0,x0)的一切次特征线所构成的特征超曲面,称为以p为顶点的特征劈锥面,连同其内部称为特征劈锥体,它们由位于t≥t0及t≤t0的前向及后向两部分组成。过p点指向此劈锥面内部的任一方向,称为此点的类时方向;一个处处和类时方向相切的曲线称为类时曲线。以P为顶点的特征劈锥面内部的任一点,都可用类时曲线与p点相连。在p点将劈锥的前后两部分隔开来的任一超曲面元素,称为类空元素;处处和类空元素相切的超曲面称为类空超曲面。对方程(4),超平面t为常数就是一个类空超曲面。对波动方程(1),次特征线都是直线,而以p(t0,x0)为顶点的特征劈锥面就是特征锥面.
此时t轴恰为一个类时曲线。在方程(4)的主部的系数有界时,以任何点为顶点的特征劈锥面,都可包含在以此点为顶点的一个固定大小的圆锥中。解的弱间断面一定是特征超曲面,因此,在波的传播中,特征超曲面可用来表示波前,即作为已受扰动与未受扰动的区域的分界面,而任何扰动都沿着次特征线传播。这里,扰动沿次特征线传播的性质,充分体现了一般情形下线性偏微分方程的解的奇性传播的特点。在光学中,次特征线就是光线,沿着它们积分一些常微分方程,在高频振动的情况下,可得到精确解的渐近展开式。这一方法称为几何光学近似。它将波动光学和几何光学联系起来,并为傅里叶积分算子提供了一个雏型。
对双曲型方程(4),常见的定解问题是柯西问题或称初值问题:求方程(4)在t>0时的解u=u(t,x),使它满足如下的初始条件 t=0: u= u0(x),式中u0(x)及u1(x)为给定的适当光滑的函数。一般地说,柯西问题的初始资料可以给在任一类空超曲面上。对于正规双曲型方程,其柯西问题是在阿达马意义下适定的,即其解存在、惟一并以某种方式连续地依赖于初始资料。不仅如此,柯西问题(4)、(6)的解u在一点p(t0,x0)(t0>0)之值,只依赖于以p点为顶点的后向特征劈锥体与初始超平面t=0交截所得的区域Gp上的初始资料,而和Gp外的初始资料无关。Gp称为点p的依赖区域。依赖区域的有界性反映了波动以有限速度传播的事实,是双曲型方程所具有的一个本质的特点。相应地,初始资料在t=0上一点p0的一个邻域中的扰动,仅影响到解在以p0为顶点的前向特征劈锥体的一个邻域中的数值。这个前向特征劈锥体称为p0点的影响区域。在特殊的情形下(例如对n>1为奇数时的波动方程(1)),解u在p(t0,x0)点的值仅依赖于初始资料在Gp的边界的一个任意小的邻域中的值,而p0 点的影响区域仅是过 p0点的前向特征劈锥面。此时,波的传播有清晰的阵面,不会出现波的弥散,称为成立惠更斯原理。对n为偶数的波动方程(1),惠更斯原理不成立。然而,不论在哪一种情形,由于解的奇性(不连续性)沿着次特征线传播,在t=0上一点p0处初始资料的奇性仅通过以p0为顶点的前向特征劈锥面传播出去,或者说,解在p(t0,x0)点的光滑性仅依赖于初始资料在Gp边界的一个任意小的邻域中的光滑性。这个事实,称为广义的惠更斯原理。 双曲型方程柯西问题的现代理论,是由J.(-S.)阿达马对二阶双曲型方程柯西问题的先驱工作开始的。他通过构造在特征劈锥面上具有奇性的解(基本解)来求解柯西问题,并采用求发散积分的有限部分的方法来克服所遇到的奇性困难。他的工作经过M.里斯及С.Л.索伯列夫等人的发展,对广义函数论的建立是一个重要的推动,而阿达马的方法在广义函数论的框架中也得到了更清晰和完善的表达。
证明柯西问题适定性的一个比较简便的方法是能量积分法。所谓能量积分,就是在x空间中由解及其若干阶偏导数所组成的正定的积分。在一些常见的波动现象中,利用波在传播中的能量守恒律,可以知道某些能量积分是不随时间t变化的常数。对一般的二阶双曲型方程(4),也能在一个包含特征劈锥面的适当大的圆锥中建立有关能量积分的一些估计式,称为能量不等式。由此不仅可以证明柯西问题解的惟一性及对初始资料的连续依赖性,还可以证明解的存在性及正规性。为此,自然地采用了泛函分析的框架,并要利用索伯列夫空间的理论。 除柯西问题外,另一类重要的定解问题是混合初-边值问题,简称混合问题,即要求方程(4)的一个解 u(t,x),使它在x空间的一个区域的边界上满足给定的边界条件,并在此区域上满足t=0时的初始条件。在研究波的反射、干扰或有界弹性体的振动等问题时,就会自然地提出这类问题。二阶双曲型方程(4)带常见边界条件的混合问题也是在阿达马意义下适定的。在n=1的情形,对二阶双曲型方程的柯西问题及混合问题都可以利用黎曼函数方法求解。
对于高阶的方程或方程组,其双曲型的定义同样是和柯西问题的适定性密切联系在一起的,甚至可以用保证柯西问题为适定的要求来作为双曲型的定义。在常系数的情形,已为L.戈尔丁所详细分析,并给出了此时方程中的系数所应满足的代数条件,但由于该定义涉及到方程中非主部的系数,难以推广到变系数的情形。在一般的情况下,有意义的是给出方程中的系数所满足的一些代数条件,使能保证柯西问题的适定性,并适用于相当广泛的场合。下面是最常见和重要的两种情形。