当前位置:首页 > 教育综合 > 正文

求一个三角函数方程转换!急!sin 4x-π/3转化成cos的形式

sin如何变成cos

sin(π/2-a)=cosa或者sin(π/2+a)=cosa。

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

扩展资料:

诱导公式口诀“奇变偶不变,符号看象限”意义:

k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。

参考资料来源:百度百科——三角函数公式

sin怎么化成cos?

sin(π/2-a)=cos a或者sin(π/2+a)=cos a。

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

cot(π/2-α)=tanα

扩展资料:

更多公式:

公式一

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)= tanα

cot(π+α)=cotα

公式三

任意角α与-α的三角函数值之间的关系(利用 原函数 奇偶性):

sin(-α)=-sinα

cos(-α)= cosα

tan(-α)=-tanα

cot (—α) =—cotα

公式四

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)= cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

参考资料:百度百科---三角函数诱导公式

求关于sin和cos的几个转换公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等

k是整数  sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

sec(2kπ+α)=secα

csc(2kπ+α)=cscα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系  sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sec(π+α)=-secα

csc(π+α)=-cscα

公式三:

任意角α与 -α的三角函数值之间的关系  sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

sec(-α)=secα

csc(-α)=-cscα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系  sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sec(π-α)=-secα

csc(π-α)=cscα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系  sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sec(2π-α)=secα

csc(2π-α)=-cscα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系  sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sec(π/2+α)=-cscα

csc(π/2+α)=secα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

扩展资料:

对于边长为a,b和c而相应角为A,B和C的三角形,有:sinA / a = sinB / b = sinC/c

也可表示为:a/sinA=b/sinB=c/sinC=2R

变形:a=2RsinA,b=2RsinB,c=2RsinC

其中R是三角形的外接圆半径。

它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。在这个定理中出现的公共数 (sinA)/a是通过A,B和C三点的圆的直径的倒数。

正弦定理用于在一个三角形中已知两个角和一个边求未知边和角;已知两边及其一边的对角求其他角和边的问题。这是三角测量中常见情况。

三角函数正弦定理可用于求得三角形的面积:S=1/2absinC=1/2bcsinA=1/2acsinB

参考资料来源:百度百科——三角函数

三角函数转换的问题 有耐心的朋友回答

是诱导公式的逆用 sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotα sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα 1.公式的证明: 正弦和余弦的诱导公式,用两角和(差)公式展开、化简,即可证明。 正切的诱导公式,可由正弦和余弦的诱导公式相除而得。 2.公式的运用和记忆: (1)公式两边互

sin化成cos的公式

sin化成cos的公式:sin(π/2+α)=cosα和sin(π/2-a)=cosa。 诱导公式口诀“奇变偶不变,符号看象限”。意义:形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。 形如2k×90°±α,则函数名称不变。 k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 补充公式: cos(π/2+α)=-sinα;sin(π/2-α)=cosα;cos(π/2-α)=sinα。
展开全文阅读