求1,2,3,5,7,10,13,17,21 的通项公式?
- 教育综合
- 2024-12-25 17:44:47
求1,2,3,5,7,10,13,17,21 的通项公式
1,2,3,5,7,10,13,17,21 的通项公式:奇数项:2[(n-1)/2]!+1
偶数项:2[(n/2-1)]!+n/2+1
数列1.2.3.5.8........通项公式
通项公式(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。) 注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)
通项公式的推导
斐波那契数列:1、1、2、3、5、8、13、21、…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=1,F(n)=F(n-1)+F(n-2) (n≥2), 显然这是一个线性递推数列。 方法一:利用特征方程(线性代数解法) 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2,,X2=(1-√5)/2。 则F(n)=C1*X1^n + C2*X2^n。 ∵F(1)=F(2)=1。 ∴C1*X1 + C2*X2。 C1*X1^2 + C2*X2^2。 解得C1=√5/5,C2=-√5/5。 ∴F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)。 方法二:待定系数法构造等比数列1(初等代数解法) 设常数r,s。 使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。 则r+s=1, -rs=1。 n≥3时,有。 F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。 F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。 F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。 …… F(3)-r*F(2)=s*[F(2)-r*F(1)]。 联立以上n-2个式子,得: F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。 ∵s=1-r,F(1)=F(2)=1。 上式可化简得: F(n)=s^(n-1)+r*F(n-1)。 那么: F(n)=s^(n-1)+r*F(n-1)。 = s^(n-1) + r*s^(n-2) + r^2*F(n-2)。 = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。 …… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)。 = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。 (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。 =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。 =(s^n - r^n)/(s-r)。 r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。 则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。 方法三:待定系数法构造等比数列2(初等代数解法) 已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。 解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。 得α+β=1。 αβ=-1。 构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。 所以。 an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。 an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。 由式1,式2,可得。 an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。 an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。 将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。 <
求通项公式1,2,3,5,8,13,21……
著名的斐波那契数列:1,1,2,3,5,8,13,21……你的数列是它的一部分
请看斐波那契数列的求法:
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)
(n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,
X2=(1-√5)/2.
则F(n)=C1*X1^n
+
C2*X2^n
∵F(1)=F(2)=1
∴C1*X1
+
C2*X2
C1*X1^2
+
C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1,
-rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*F(n-2)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+
r^3*F(n-3)
……
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)*F(1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n
-
r^n)/(s-r)
r+s=1,
-rs=1的一解为
s=(1+√5)/2,
r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}
如何求1,2,3,5,8,13,21..........的通项公式
斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
【该数列有很多奇妙的属性】
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
【斐波那契数列别名】
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那契数列
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:0123456789101112
兔子对数:1123581321345589144233
表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)
【斐波那挈数列通项公式的推导】
斐波那契数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
数列:1,1,2,3,5,8,13,21…的通项公式和前n项和?
线性递推数列的特征方程为:X^2=X+1解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
乘法的计算法则:
(1)数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;
(2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0)
展开全文阅读
上一篇
国内天然气气压单位换算mbar
下一篇
返回列表