浮漂上下运动的频率决定于那些因素,这些因素决定频率的数学形式是什么
- 教育综合
- 2023-01-18 17:43:32
数学频率的计算公式是什么?
频数=总数×频率。频数又称次数,指变量值中代表某种特征的数出现的次数,按分组依次排列的频数构成频数数列,用来说明各组标志值对全体标志值所起作用的强度,各组频数的总和等于总体的全部单位数,频数的表示方法,既可以用表的形式,也可以用图形的形式。
频率,是指单位时间内完成周期性变化的次数,是描述周期运动频繁程度的量,常用符号f或ν表示,单位为秒分之一,符号为s。
为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称"赫",符号为Hz。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有频率。频率概念不仅在力学、声学中应用,在电磁学、光学与无线电技术中也常使用。
数学中的频率是什么意思
英文释义:frequency 对频率的定义 单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量,常用符号f或v表示,单位为秒-1。为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称“赫”。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有频率。频率概念不仅在力学、声学中应用,在电磁学和无线电技术中也常用。交变电流在单位时间内完成周期性变化的次数,叫做电流的频率。 [编辑本段]物理学上的: 物质在1秒内完成周期性变化的次数叫做频率,常用f表示。 物理中频率的单位是赫兹(Hz),简称赫,也常用千赫(kHz)或兆赫(MHz)或GHz做单位。1kHz=1000Hz频域特性的频域分析
频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。动态信号从时间域变换到频率域主要通过傅立叶级数和傅立叶变换实现。周期信号靠傅立叶级数,非周期信号靠傅立叶变换。 一个频域分析的简例可以通过图1:一个简单线性过程中小孩的玩具来加以说明。该线性系统包含一个用手柄安装的弹簧来悬挂的重物。小孩通过上下移动手柄来控制重物的位置。
任何玩过这种游戏的人都知道,如果或多或少以一种正弦波的方式来移动手柄,那么,重物也会以相同的频率开始振荡,尽管此时重物的振荡与手柄的移动并不同步。只有在弹簧无法充分伸长的情况下,重物与弹簧会同步运动且以相对较低的频率动作。
随着频率愈来愈高,重物振荡的相位可能更加超前于手柄的相位,也可能更加滞后。在过程对象的固有频率点上,重物振荡的高度将达到最高。过程对象的固有频率是由重物的质量及弹簧的强度系数来决定的。
当输入频率越来越大于过程对象的固有频率时,重物振荡的幅度将趋于减少,相位将更加滞后(换言之,重物振荡的幅度将越来越少,而其相位滞后将越来越大)。在极高频的情况下,重物仅仅轻微移动,而与手柄的运动方向恰恰相反。 所有的线性过程对象都表现出类似的特性。这些过程对象均将正弦波的输入转换为同频率的正弦波的输出,不同的是,输出与输入的振幅和相位有所改变。振幅和相位的变化量的大小取决于过程对象的相位滞后与增益大小。增益可以定义为“经由过程对象放大后,输出正弦波振幅与输入正弦波振幅之间的比例系数”,而相位滞后可以定义为“输出正弦波与输入正弦波相比较,输出信号滞后的度数”。
与稳态增益K值不同的是,“过程对象的增益和相位滞后”将依据于输入正弦波信号的频率而改变。在上例中,弹簧-重物对象不会大幅度的改变低频正弦波输入信号的振幅。这就是说,该对象仅有一个低频增益系数。当信号频率靠近过程对象的固有频率时,由于其输出信号的振幅要大于输入信号的振幅,因此,其增益系数要大于上述低频下的系数。而当上例中的玩具被快速摇动时,由于重物几乎无法起振,因此该过程对象的高频增益可以认为是零。
过程对象的相位滞后是一个例外的因素。由于当手柄移动得非常慢时,重物与手柄同步振荡,所以,在以上的例子中,相位滞后从接近于零的低频段输入信号就开始了。在高频输入信号时,相位滞后为“-180度”,也就是重物与手柄以相反的方向运动(因此,我们常常用‘滞后180度’来描述这类两者反向运动的状况)。
Bode图谱表现出弹簧-重物对象在0.01-100弧度/秒的频率范围内,系统增益与相位滞后的完整频谱图。这是Bode图谱的一个例子,该图谱是由贝尔实验室的Hendrick Bode于1940s年代发明的一种图形化的分析工具。利用该工具可以判断出,当以某一特定频率的正弦波输入信号来驱动过程对象时,其对应的输出信号的振动幅度和相位。欲获取输出信号的振幅,仅仅需要将输入信号的振幅乘以“Bode图中该频率对应的增益系数”。欲获取输出信号的相位,仅仅需要将输入信号的相位加上“Bode图中该频率对应的相位滞后值”。 在过程对象的Bode图中表现出来的增益系数和相位滞后值,反映了系统的非常确定的特征,对于一个有丰富经验的控制工程师而言,该图谱将其需要知道的、有关过程对象的一切特性都准确无误的告诉了他。由此,控制工程师运用此工具,不仅可以预测“系统未来对于正弦波的控制作用所产生的系统响应”,而且能够知道“系统对任何控制作用所产生的系统响应”。
傅立叶定理使得以上的分析成为可能,该定理表明任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。数学家傅立叶在1822年证明了这个著名的定理,并创造了为大家熟知的、被称之为傅立叶变换的算法,该算法利用直接测量到的原始信号,以累加方式来计算不同正弦波信号的频率、振幅和相位。
从理论上说,傅立叶变换和Bode图可以结合在一起使用,用以预测当线性过程对象受到控制作用的时序影响时产生的反应。详见以下:
1) 利用傅立叶变换这一数学方法,把提供给过程对象的控制作用,从理论上分解为不同的正弦波的信号组成或者频谱。
2) 利用Bode图可以判断出,每种正弦波信号在经由过程对象时发生了那些变化。换言之,在该图上可以找到正弦波在每种频率下的振幅和相位的改变。
3) 反之,利用反傅立叶变换这一方法,又可以将每个单独改变的正弦波信号转换成一个信号。
既然反傅立叶变换从本质上说,也是一种累加处理,那么过程对象的线性特征将会确保-“在第一步中计算得到的各种理论正弦波”所产生单独作用的集合,应该等效于“各不同正弦波的累加集合”共同产生的作用。因此,在第三步计算得到的总信号,将可以代表“当所提供的控制作用输入到过程对象时,过程对象的实际值”。
请注意,在以上这些步骤中,没有哪个点不是由画在图上的控制器产生的单独正弦波构成。所有这些频域方面的分析技术都是概念性的。这是一种方便的数学方法,运用傅立叶变换(或者紧密相关的拉普拉斯变换),将时域信号转换为频域信号,然后再用Bode图或其他一些频域分析工具来解决手头的一些问题,最后再用反傅立叶变换将频域信号转换为时域信号。
绝大多数可用此方法解决的控制设计问题,也可以在时域内通过直接的操控来解决,但是对于计算而言,利用频域的方法通常更简单一些。在上例中,就是用乘法和减法来计算过程实际值的频谱,而该过程实际值是通过对给定的控制作用进行傅立叶变换,尔后又对照Bode图分析而得到的。
将所有的正弦波进行正确的累加,就会产生如傅立叶变换所预示的那类形状的信号。当有时这一现象并不直观,举个例子可能有助于理解。
请再次想想上面那个例子中小孩的重物-弹簧玩具,操场上的跷跷板,以及位于外部海洋上的船。设想这艘船以频率为w和幅度为A的正弦波形式在海面上起起落落,我们同时再假设跷跷板也以频率为3w和幅度为A/3的正弦波形式在振荡,并且小孩以频率为5w和幅度为A/5的正弦波形式在摇动玩具。‘三张单独的正弦波波形图’已经显示出,如果我们将三个不同的正弦波运动进行分别观察的话,每个正弦波运动将会体现出的形式。
现在假设小孩坐在跷跷板上,而跷跷板又依次固定在轮船的甲板上。如果这三者单独的正弦波运动又恰巧排列正确的话,那么,玩具所表现出的总体运动就大约是一个方波-如图4:三者合成的正弦波显示的那样。
以上并非一个非常确切的实际例子,但是却明白无误的说明:基本频率正弦波、振幅为三分之一的三倍频率谐波、以及振幅为五分之一的五倍频率谐波,它们波形的相加总和大约等于频率为w、振幅为A的方波。甚至如果再加上振幅为七分之一的七倍频率谐波、以及振幅为九分之一的九倍频率谐波时,总波形会更像方波。其实,傅立叶定理早已说明,当不同频率的正弦波以无穷级数的方式无限累加时,那么由此产生的总叠加信号就是一个严格意义上的、幅度为A的方波。傅立叶定理也可以用来将非周期信号分解成正弦波信号的无限叠加。
通过求解微分方程分析时域性能是十分有用的,但对于比较复杂的系统这种办法就比较麻烦。因为微分方程的求解计算工作量将随着微分方程阶数的增加而增大。另外,当方程已经求解而系统的响应不能满足技术要求时,也不容易确定应该如何调整系统来获得预期结果。从工程角度来看,希望找出一种方法,使之不必求解微分方程就可以预示出系统的性能。同时,又能指出如何调整系统性能技术指标。频域分析法具有上述特点,是研究控制系统的一种经典方法,是在频域内应用图解分析法评价系统性能的一种工程方法。该方法是以输入信号的频率为变量,对系统的性能在频率域内进行研究的一种方法。频率特性可以由微分方程或传递函数求得,还可以用实验方法测定.频域分析法不必直接求解系统的微分方程,而是间接地揭示系统的时域性能,它能方便的显示出系统参数对系统性能的影响,并可以进一步指明如何设计校正.这种分析法有利于系统设计,能够估计到影响系统性能的频率范围。特别地,当系统中存在难以用数学模型描述的某些元部件时,可用实验方法求出系统的频率特性,从而对系统和元件进行准确而有效的分析。
概率论与拉普拉斯决定论矛盾吗?还有辩证决定论呢?
概率论与拉普拉斯决定论矛盾吗?对这个问题的争论有很多,今天我们就来一起探讨一下!
拉普拉斯决定论
根据拉普拉斯决定论的看法,宇宙在给定时刻的状态可由适合无穷多个微分方程的无穷多个参数来决定,假如有某一个“无所不知的大天才”(人们把他称为拉普拉斯妖)可以写出所有的方程并且把它们用积分表示出来,那么就能准确预测宇宙在所有时间的全部演化。今天,人们往往认为拉普拉斯决定论是错误的,反对的观点主要有:
1.世界是无限复杂的,事物是无限联系的,因此,人们无法全面的认识事物发展的所有因果链条,也无法对事物的发展做出准确的预测;
2.人具有能动性,人的意识就不符合拉普拉斯决定论;
3.热力学第二定律的概率解释冲击了拉普拉斯决定论;
4.量子力学指出微观粒子的行为往往表现为一种概率特征;
5.混沌现象长期行为不可预测。
我们不打算详细叙述上述观点,这一工作留给后面的文章。热力学、量子力学和混沌学都要以概率论为工具,而且概率论研究的是随机事件和随机过程,这是不是表明概率论和拉普拉斯决定论互相矛盾呢?
概率论:随机事件是一个理论模型
让我们对概率论作一番仔细的考察。
概率论的研究对象是随机事件,随机事件是不是就简简单单地理解为有时发生有时不发生(即具有随机性)的事件呢?我们需要对这一概念做几点说明。
首先,随机事件是针对条件组而言的,在指定的条件下,有的事件一定发生,有的事件不可能发生,有的事件可能发生可能不发生,分别对应着必然事件,不可能事件和随机事件。条件不同,事件的情况可能不同。例如,在地面上向上扔石子(条件组),石子落回地面就是必然事件;然而,换个条件情况就完全不一样了。我们知道随机事件的发生可由概率来刻画,条件不同概率便有可能不同。就拿最经典的掷色子来举例子,掷完色子后,若甲看不到色子的情况(条件组),那么指定某一点朝上的概率就是六分之一;这时候乙偷偷地看了看色子的点数,告诉甲色子的点数是奇数(新的条件组),这时候指定某一点朝上的概率就是三分之一了,这样才会有概率论中的条件概率。
从上面的例子可以看出,一个确定的事件照样有可能是随机事件,而且概率还会随着条件的变化而改变,为什么会这样呢?在这里,甲需要对色子的情况做出判断,在掷色子之前,如果我们能够考虑到掷色子的角度、力度、地球引力、空气阻力、风的影响、色子落到桌面的情况等,也就是把色子的受力情况完全刻画清楚,那色子的运动情况就会完全确定下来,不过甲并不是拉普拉斯妖,根本就做不到这一点;而掷完之后,尽管色子的情况已经是确定的了,但由于甲看不到色子的情况,也完全做不出确定的判断。
很多时候,甲又往往需要做一个判断,就只好将之当作随机的来处理。好在大量重复掷色子的过程中,每个点数出现的频率表现出了某种稳定性,直观的理解是:稳定后的频率就是概率。这样,甲便具有了做出判断的方式,但这种判断也有随机性。如果色子是均匀的,那么每个点数出现的概率都是六分之一,这样甲无论怎样都不会具有优势;但色子如果不均匀致使某个点数更容易出现,甲又发现了这个点数的概率更大,那就比不清楚这个情况时更有优势,但这仍然不能保证每次都知道点数。从这里我们就能明白把事件看成是随机的并不是否定现实情况的确定性,而是人只能处理自己能处理的问题,为了问题可以处理而把事件当作随机的来对待。
再举一个例子,为了了解灯泡厂生产的灯泡质量如何,需要清楚灯泡照明的小时数,对生产的一批灯泡,把每个灯泡拿来都测试一下就可以获得关于这批灯泡的确切信息。然而,这不仅费时,而且测完后灯泡就报废了,所以没有人会这么解决问题,只好抽取一批灯泡测试,以此来得出全体灯泡的概率信息。
下面做一些理论的说明。客观世界无限复杂,为了解决问题只好抓主要矛盾,但是次要矛盾的忽略就带来了失真。对我们而言,解决问题越简单越好,失真程度越小越好,但实际情况往往是追求简单得以更大的失真程度为代价,简单性与代表性构成了一对矛盾,模型就是简单性与代表性的对立统一,例如质点便是如此。科学研究是以模型为前提的,数学研究照样需要模型,随机事件就是一个模型,它在概率论中的作用就类似质点在运动学和动力学中的作用。尽管在现实情况中它是确定的,但我们把事件看成随机的,以便于得到具有简单性和代表性的模型。
归纳和演绎的稳定性
我们能够研究随机事件的关键是试验次数足够大时频率的稳定性,这里的稳定性我们也需要做一些说明。首先,频率的稳定性不是随意假定的,而是在大量试验中归纳出来的,也就是说在许多随机事件那里都发现频率会随试验次数的增大而在某个确定值附近波动,只有稳定的情况出现才能用概率论的方法研究相应的随机事件,在此过程中归纳是前提。
其次,这里的稳定性和获得实验序列的方法是无关的。举例来说,买彩票中奖是随机事件,这就意味着倾向于奇数的人和倾向于偶数的人的中奖概率(https://www.shuxuejingwei.com/probability_math/)得是一样的,不能说用抽奇数的方法得到的序列比用抽偶数的方法得到的序列更容易或更不容易中奖。
最后,数学需要对这一稳定性做出定量的描述,这就是我们概率论中学到的大数定律。需要注意的是:频率的稳定不排除个别异常值的出现,因此也是一个随机现象,我们仍然只能用概率来做出定量的描述。
上面提到归纳是研究随机事件的前提,但归纳的成本往往很大,耗时较长,而且有些试验极难操作或者不易观察。因此,如果所有新出现的随机事件都用大量试验进行归纳,这是效率极低的,甚至常常是不可能做到的。既然已经有了大量材料的积累,我们就可以抽象出一些基本假定,用演绎的方法得到新的概率规律。而且,我们往往从对称性的考虑出发得到基本事件的概率。例如均匀六面体任意一面触地的概率都是六分之一,那么由对称性我们也有理由相信均匀十二面体任意一面触地的概率是十二分之一。归纳是直接的验证,在应用演绎得到的结论时也做了间接的验证。归纳和演绎各有各的作用,不能替代。前提只能归纳,有了前提才能演绎,因此所有的科学革命都是从归纳开始的。一旦有了新的归纳,只有通过演绎才能使它的威力充分发挥出来。
概率论中的概念并不能表示现实事物相应的特点,就像现实中确定的事件照样有可能被看作随机事件,独立事件也并不表示两个事件毫无联系。我们还是举例来看这个事情。
蒲丰投针试验是概率论发展史上一个著名的例子,这是历史上第一次用几何的方式描述概率问题。投针试验是这么说的:白纸上有若干条等间距的平行线,往白纸上投针,问针与线相交的概率是多少?这个概率显然与针的长度有关,对于固定长度的针,我们注意到针是否与线相交可以由针的中点位置以及针和线的夹角来确定,假定针的中点位置和针线夹角是独立的,就可以借助于积分方法可以给出问题的解答。同时需要注意针的中点位置和针线夹角是从不同角度刻画针的位置,从产生角度是联系在一起的。事件的独立性是模型与模型间的关系,不代表真实事物间没有联系,这样就使得独立事件的应用范围大大拓展,极大程度地保证了独立事件有关公式的运用。
概率论和拉普拉斯决定论并不矛盾
做了这些考察和说明后,概率论和拉普拉斯决定论是否矛盾的回答就十分显然了。拉普拉斯决定论肯定了一切现象都有确定的因果链条,说明的是现实世界必然因果关系的存在性。它的意义在于告诉我们,既然客观世界是确定的,而且有确定的因果关系,那我们就老老实实地去揭示这些因果关系。但是,它并没有告诉我们如何去揭示因果关系,而且人的认识确实是有限度的,我们对客观世界因果关系的认识是一个不断逼近的极限过程。概率论则是基于能切实把握到的信息,通过建立模型来处理问题或者更好地做出判断,它与拉普拉斯决定论探讨的根本不是同一层面的问题,自然不会相互矛盾。而且尽管随机事件带有不确定性,但是概率规律仍然存在,概率规律可以理解为微观规律或规律组的宏观表现形式。
我们回到掷色子的例子做一个说明。前面我们说过在考虑到所有的因素时是可以确定一次具体掷色子的点数的,不同的因素起到不同的作用而且能导致频率的稳定性。在掷色子的过程中,色子是否均匀影响到质心的位置从而影响重力的作用情况,重力是起主导作用的力并且作用情况是稳定的。色子受的空气阻力一是可以近似忽略,二是即使不忽略也不明显地影响点数情况。其次像抛掷的角度、力度等等对点数没有明显的倾向性,在大量抛掷时这些因素的影响会相互抵消掉。正是这些因素的作用特点导致了频率的稳定情况。一次具体的抛掷过程尽管确定但由于人能的限制预测不了,而宏观的稳定表现恰恰是一次次确定的结果导致的,而且是可以观察和预测的。概率论和拉普拉斯决定论在这个过程中探讨的是不同的问题,是可以相互统一的。
(内容转自“数学经纬网”www.shuxuejingwei.com)