如下面公式,圆周率是这个公式吗?
- 留学出国
- 2023-07-18 17:44:13
圆周率公式是什么?
圆周率公式是:π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算可观测宇宙(observable universe)的大小,误差还不到一个原子的体积。以前的人计算圆周率,是要探究圆周率是否循环小数。
国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。
代数
π是个无理数,即不可表达成两个整数之比,是由德国科学家约翰·海因里希·兰伯特于1761年证明的。1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
圆周率的计算公式
圆周率(Pi)是圆的周长与直径的比值,公式为:
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
扩展资料
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙(observable universe)的大小,误差还不到一个原子的体积 。
以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
π在许多数学领域都有非常重要的作用。
参考资料来源:百度百科-圆周率 (圆的周长与直径的比值)
求圆周率的计算公式?
最有可能是使用连分数法:由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650… 最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。若是对这些感兴趣可以上网找找,这里有个网站仅供参考 http://zhidao.baidu.com/question/29237343.html圆周率公式?
圆周率(
)一般定义为一个圆形的周长(
)与直径(
)之比:
,或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形,
的值都是一样,这样就定义出常数
。
注意:将
定义为单位圆的周长的一半是有意义的,这是因为从现代数学的角度来看,直径为d、半径为r的圆的周长C由以下积分给出:
即
上式中令
,由定积分的换元法可得:
其中
是单位圆周的周长(C的表达式中取r=1即得)。若定义
,则
,与我们熟知的周长公式相符。
而半径为r的圆的面积S由以下积分给出:
令
,由定积分的换元法可得:
其中
是单位圆的面积(S的表达式中取r=1即得)。利用分部积分法,
于是,
因此,我们得到关系式:
这样一来也得到了我们熟知的圆面积公式
第二个做法是,以圆形半径为边长作一正方形,然後把圆形面积和此正方形面积的比例定为
,即圆形之面积与半径平方之比。
定义圆周率不一定要用到几何概念,比如,我们可以定义
为满足
的最小正实数
。
这里的正弦函数定义为幂级数
圆周率计算公式?
圆周率计算公式:
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
圆周率的特性:
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算可观测宇宙的大小,误差还不到一个原子的体积。
以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。