当前位置:首页 > 教育综合 > 正文

蝴蝶定理用向量证明

蝴蝶定理证明是什么?

蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。

去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”,不为中点时满足:1/MY-1/MX=1/MQ-1/MP ,这对2,3均成立。

蝴蝶定理是古典欧式平面几何的最精彩的结果之一。这个定理的证法不胜枚举,至今仍然被数学热爱者研究,在考试中时有出现各种变形。

发展历史

这个命题最早作为一个征解问题出现于公元1815年英国的一本杂志《男士日记》(Gentleman's Diary)39-40页(P39-40)上。有意思的是,直到1972年以前,人们的证明都并非初等,且十分繁琐。

这篇文章登出的当年,英国一个自学成才的中学数学教师W.G.霍纳(他发明了多项式方程近似根的霍纳法)给出了第一个证明,完全是初等的;另一个证明由理查德·泰勒(Richard Taylor)给出。

另外一种早期的证明由M.布兰德(Mile Brand)1827年的一书中给出。最为简洁的证法是射影几何的证法,由英国的J·开世在"A Sequel to the First Six Books of the Elements of Euclid"给出,只有一句话,用的是线束的交比。

“蝴蝶定理”这个名称最早出现于《美国数学月刊》1944年2月号,题目的图形象一只蝴蝶。

1981年,Crux杂志刊登了K.萨蒂亚纳拉亚纳(Kesirajn Satyanarayana)用解析几何的一种比较简单的方法,利用直线束,二次曲线束。

1990年,CMO出现了筝形蝴蝶定理。

蝴蝶定理最简单证明

蝴蝶定理最简单证明如下:

1、M作为圆内弦的交点是不必要的,可以移到圆外。

2、圆可以改为任意圆锥曲线。

3、将圆变为一个筝形,M为对角线交点。

4、去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”, 不为中点时满足。这对1,2均成立。

蝴蝶定理(Butterfly Theorem),是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现在1815年,由W.G.霍纳提出证明。而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。这个定理的证法不胜枚举,仍然被数学爱好者研究,在考试中时有各种变形。

这个命题最早作为一个征解问题出现于公元1815年英国的一本杂志《男士日记》(Gentleman's Diary)39-40页(P39-40)上。有意思的是,直到1972年以前,人们的证明都并非初等,且十分繁琐。

这篇文章登出的当年,英国一个自学成才的中学数学教师W.G.霍纳(他发明了多项式方程近似根的霍纳法)给出了第一个证明,完全是初等的;另一个证明由理查德·泰勒(Richard Taylor)给出。

另外一种早期的证明由M.布兰德(Mile Brand)1827年的一书中给出。最为简洁的证法是射影几何的证法,由英国的J开世在"A Sequel to the First Six Books of the Elements of Euclid"给出,只有一句话,用的是线束的交比。

“蝴蝶定理”这个名称最早出现于《美国数学月刊》1944年2月号,题目的图形象一只蝴蝶。

蝴蝶定理证明是什么?

蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。

去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”,不为中点时满足:1/MY-1/MX=1/MQ-1/MP ,这对2,3均成立。

简介

蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上,由于其几何图形形象奇特,酷似蝴蝶,因此而得名。

历史上出现过许多优美奇特的解法,其中最早的应首推霍纳所给出的非初等的证法。至于初等数学的证法,在国外资料中,一般都认为是由一位中学数学教师斯特温首先提出的,他给出的是面积法的证明。

蝴蝶模型基本公式是什么?

●蝴蝶模型

蝴蝶模型,是平面图形中常用的五个模型之一,其特点是通过边与面积的关系来解决问题。对于初学者来说,最重要的是理解什么是蝴蝶模型并熟记它的特征,蝴蝶模型分为任意四边形和梯形中的蝶形。

一、蝴蝶模型的相关知识

1.定义:如图,在任意凸四边形ABCD中,AC、BD相较于点O,形成的图形形似蝴蝶而被称为蝴蝶模型。其中存在的比例关系被称为蝴蝶定理。

请点击输入图片描述

2.核心:比例模型又:

请点击输入图片描述

二、蝴蝶模型的原理剖析

如图,在任意凸四边形ABCD中,AC,BD相交于O点,则有三角形AOD与三角形AOB有相同的高,所以S△AOB:S△AOD=OB:OD,即S1:S2=OB:OD。

请点击输入图片描述

三、蝴蝶模型的方法运用

蝴蝶模型解题四部曲:

第一步:观察:图中是否有蝴蝶模型

第二步:构造:蝴蝶模型

第三步:假设:线段长度或图形面积

第四步:转化:将假设的未知数转化到已知比例中计算

图书订购:15307135271杨老师 13237105583刘老师

汇款快递,一个电话,三天到家,样书订购全套(2-6年级),免费快递

《奥数思维训练》175元/套,《冲刺名初语数外》84元/套,

欢迎培训学校加盟使用该教材!

汇款卡号:中国农业银行6228480050024427515(户名:杨云)

中国建设银行6227002872120232825(户名:杨云)

支付宝:15307135271(户名:杨云)

加盟合作:欢迎培训学校、一对一机构加盟使用该教材,数学特惠加盟:2017年9月、10月数学加盟费每个年级只要3000元,提供教法、课件和导学案,有意者请加微信18071541068(加微信备注“加盟”,获取加盟资料),也可以直接电话联系13006319485杨老师。

【例1】

如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?

【例2】

如图所示,BD、CF将长方形ABCD分成4块,△DEF的面积是4平方厘米,△CED的面积是6平方厘米。问:四边形ABEF的面积是多少平方厘米?

蝴蝶定理是什么?

  蝴蝶定理这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。
  蝴蝶定理(ButterflyTheorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。
  去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”,不为中点时满足:1/MY-1/MX=1/MQ-1/MP,这对2,3均成立。



向左转|向右转
  

展开全文阅读