如何用求原函数的方法求∫√(r²-x²)dx=πr²/2,积分范围[-r,r]
- 教育综合
- 2024-12-15 13:00:02
一个函数的原函数怎么求???原函数是啥??
一个函数的原函数求法:对这个函数进行不定积分。
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
图片问题:
∫1/xdx=ln丨x丨+c。
∫sin4x=1/4∫sin4xd4x=-1/4cos4x+c。
扩展资料:
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。
例如:x³是3x²的一个原函数,易知,x³+1和x³+2也都是3x²的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。
例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
求导数的原函数是有几种常见方法
1、公式法
例如∫x^ndx=x^(n+1)/(n+1)+C ∫dx/x=lnx+C ∫cosxdx=sinx 等不定积分公式都应牢记,对于基本函数可直接求出原函数。
2、换元法
对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。 例如计算∫e^(-2x)dx时令t=-2x,则x=-1/2t,dx=-1/2dt,代入后得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。
3、分步法
对于∫u'(x)v(x)dx的计算有公式: ∫u'vdx=uv-∫uv'dx(u,v为u(x),v(x)的简写) 例如计算∫xlnxdx,易知x=(x^2/2)'则: ∫xlnxdx=x^2lnx/2-1/2∫xdx =x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2) 通过对1/4(2x^2lnx-x^2)求导即可得到xlnx。
4、综合法
综合法要求对换元与分步灵活运用,如计算∫e^(-x)xdx。
扩展资料:
原函数存在定理
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。
例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。
参考资料来源:百度百科—原函数
如何求一个函数的原函数?
求一个导数的原函数使用积分,积分是微分的逆运算,即知道了函数的导函数,反求原函数。
积分求法:
1、积分公式法。直接利用积分公式求出不定积分。
2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。
(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu
两边积分,得分部积分公式∫udv=uv-∫vdu。
扩展资料:
原函数的几何意义和物理意义
设f(x)在[a,b]上连续,则由 曲线y=f(x),x轴及直线x=a,x=b围成的曲边梯形的面积函数(指代数和——x轴上方取正号,下方取负号)是f(x)的一个原函数.若x为时间变量,f(x)为直线运动的物体的速度函数,则f(x)的原函数就是路程函数。
原函数性质:
1、若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
2、函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,
3、故若函数f(x)有原函数,那么其原函数为无穷多个。
参考资料来源:百度百科-原函数
求出函数的一个原函数之后,如何求出函数的定积分
要理解这写概念应该先理解导数的概念,导数表示因变量随自变量的变化率,也就是函数曲线的点的斜率. 那么如果一个函数的函数值是常数,则其导数为0. 那么对于一个函数加上一个常数C,并不改变它本身的斜率. 而是把这个函数的函数图像也就是函数y=f(x)的值垂直向上或者向下平移了C个单位. 再说定积分和不定积分,积分是函数求导的逆过程,即求函数的原函数,那原函数只要导数等于被积函数就都是积分的目标函数,所以不定积分得出的原函数应该有无限个,入f(x)的一个原函数是F(x),那么F(x)+C求导的结果跟F(x)求导的结果都一样,当然也是f(x)的原函数.而F(x)+C的函数图像是F(x)的图像平移的结果如何求一个导数的原函数?
求一个导数的原函数使用积分,积分是微分的逆运算,即知道了函数的导函数,反求原函数。
积分求法:
1、积分公式法。直接利用积分公式求出不定积分。
2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。
(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。
3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu
两边积分,得分部积分公式∫udv=uv-∫vdu。
扩展资料:
原函数的几何意义和物理意义
设f(x)在[a,b]上连续,则由 曲线y=f(x),x轴及直线x=a,x=b围成的曲边梯形的面积函数(指代数和——x轴上方取正号,下方取负号)是f(x)的一个原函数.若x为时间变量,f(x)为直线运动的物体的速度函数,则f(x)的原函数就是路程函数。
原函数性质:
1、若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
2、函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,
3、故若函数f(x)有原函数,那么其原函数为无穷多个。
参考资料来源:百度百科-原函数
上一篇
如何确定平面简谐波的初相位
下一篇
返回列表