有简单计算方法吗
- 教育综合
- 2022-12-30 07:56:09
简便运算的技巧
简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。 主要用三种方法:加减凑整、分组凑整、提公因数法。 他们使用的都是数学计算中的拆分凑整思想。 主要步骤: ①遇见复杂的计算式时,先观察有没有可能凑整; ②运用四则运算凑成整十整百之后再进行简便计算。 2/4 加减凑整法 1、将计算式中的某一个数拆分,使其能与其他的数凑成整十,整百【例1】; 2、补上一个数,能够与其他数凑整,最后再减去这个数 分组凑整法 在只有加减法的计算题中,将算式中的各项重新分下组凑整,主要采用两个公式:G老师讲奥数(微)。【例3】 加法结合律:a+b+c=a简便运算的技巧和方法有哪些?
数学简便计算方法:
一、裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。
(3)分母上几个因数间的差是一个定值。
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。
例题
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256,可使计算简便。
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
简便计算方法
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
乘法交换律:a*b=b*a
乘法结合律:a*b*c=a*(b*c)
乘法分配律:a(b+c)=ab+ac
综合算式(四则运算)应当注意的地方:
1、如果只有加和减或者只有乘和除,从左往右计算,例如:2+1-1=2,先算2+1的得数,2+1的得数再减1。
2、如果一级运算和二级运算,同时有,先算二级运算
3、如果一级,二级,三级运算(即乘方、开方和对数运算)同时有,先算三级运算再算其他两级。
4、如果有括号,要先算括号里的数(不管它是什么级的,都要先算)。
5、在括号里面,也要先算三级,然后到二级、一级。
扩展资料:
从加法交换律和结合律可以得到:几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。
几个数的和减去一个数,可以选其中任一个加数减去这个数,再同其余的加数相加。几个数的积除以一个数,可以让积里的任何一个因数除以这个数,再与其他的因数相乘。
参考资料来源:百度百科--四则运算
简便运算的技巧和方法是什么五年级?
简便运算的技巧和方法是:
1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
3、注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
五年级数学简便计算方法过程解析。
182×67+67×48
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行。
解题过程:
182×67+67×48
=(182+48)×67
=230×67
=15410