当前位置:首页 > 教育综合 > 正文

mathematica怎么绘制出3d函数f(x,y)和约束条件g(x,y)=0两个图像相交的效果

在Mathematica中定义一个关于x的一元函数f(x,y),其中x,y满足关系g(x,y)=0

从你描述的问题来看,x,y,z由前两个式子(f 和 g 已知时)可以消除一个y变量,这样就有一个z 和 X 的关系式,h(x,z)就是一个一元方程了,x 是一个固定值了。 如下: In[24]:= Clear[x, y, z]; Reduce[{x^2 + Exp[y]*x == 0, z == x^3/3 + Sin[x] + 3 y}, {x, z}, y] Out[25]= (C[1] \[Element] Integers && x != 0 && z == 1/3 (x^3 - 18 I \[Pi] C[1] - 9 Log[-(1/x)] + 3 Sin[x])) || x ==

Mathematica怎么画三维的方程

ContourPlot3D[f,{x,Subscript[x, min],Subscript[x, max]},{y,Subscript[y, min],Subscript[y, max]},{z,Subscript[z, min],Subscript[z, max]}] produces a three-dimensional contour plot of f as a function of x, y, and z.

mathematica怎么作图,如函数三维如空间曲线(方程组对应的一条曲线),如 {z=√(4^2-x^2-y^) x+y=0

先把参数方程解出来再画就行了:


Solve[z==Sqrt@(4^2-x^2-y^2)&&x+y==0,{z,y}];

ParametricPlot3D[{x,y,z}/.%,{x,-2,2}]


当然,还可以用MeshFunctions来画。这里提供一个花哨的例子,核心的其实只有那个MeshFunctions:



Plot3D[Sqrt@(4^2 - x^2 - y^2), {x, -2, 2}, {y, -2, 2}, Mesh -> {{0}},

MeshStyle -> Directive[Orange, Thick], MeshFunctions -> (#2 - # &),

ColorFunction -> "Rainbow", PlotStyle -> Opacity[0.5]]


mathematica8.0 画3D图像

  我不知道你的代码到底想实现怎样的功能,你如果想画出图像随参数 i 的变化情况,那么不建议你这么做,当然你写的代码也实现不了,Mathematica里面有现成的函数来演示一些过程,比如函数Animate ,Manipulate ,……,感兴趣的话自己看看这些函数在帮助中的例子。

Animate[Plot3D[x^2+y^2+i*x*y,{x,-1,1},{y,-1,1},
AspectRatio->1,AxesLabel->{"X","Y","Z"},
PlotPoints->30],{i,-10,10}]

如何在Mathematica 软件中画出一个三维向量的3D 图像,是不是用这个函数ListVectorFieldPlot3D ,怎么画的

有这个命令?好像只有ListVectorPlot3D和VectorPlot3D命令,而且都是用来画向量场的。单个向量是不好画的,因为不知道起点。 向量可以用有向线段表示,就是箭头嘛~~~ 于是Graphics3D[Arrow[{{0, 0, 0}, {1, 1, 1}}]]可以画出起点在原点的(1,1,1)向量
展开全文阅读