求非齐次线性方程组
- 教育综合
- 2024-10-31 12:59:57
非齐次线性方程组的求解方法有哪些?
非齐次线性方程组Ax=b的求解方法:
1、对增广矩阵作初等行变换,化为阶梯形矩阵;
2、求出导出组Ax=0的一个基础解系;
3、求非齐次线性方程组Ax=b的一个特解(为简捷,可令自由变量全为0);
4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解。
例:
扩展资料:
非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A) 非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。 参考资料来源:百度百科—非齐次线性方程组 非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。非齐次线性方程组是常数项不全为零的线性方程组。 非齐次线性方程组Ax=b的求解步骤: (1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A) (2)若R(A)=R(B),则进一步将B化为行最简形。 (3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……,Cn-r,即可写出含n-r个参数的通解。 解的存在性 非齐次线性方程组 有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。 非齐次线性方程组有唯一解的充要条件是rank(A)=n。 非齐次线性方程组有无穷多解的充要条件是rank(A) 假定对于一个含有n个未知数m个方程的非齐次线性方程组而言,若n<=m, 则有: 1)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均等于方程组中未知数个数n的时候,方程组有唯一解 2)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均小于方程组中未知数个数n的时候,方程组有无穷多解 3)当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解 (注:由于对于矩阵的秩有:max{R(A),R(B)}<=R(A,B),故不存在其它情形) 若n>m时,则按照上述讨论, 4)当方程组的系数矩阵的秩与方程组增广矩阵的秩相等的时候,方程组有无穷多解 5)当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解 非齐次线性方程组 有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。 非齐次线性方程组有唯一解的充要条件是rank(A)=n。 非齐次线性方程组有无穷多解的充要条件是rank(A) 扩展资料: 非齐次线性方程组Ax=b的求解步骤: (1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A) (2)若R(A)=R(B),则进一步将B化为行最简形。 (3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于,即可写出含n-r个参数的通解。 对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m 齐次线性方程组解的性质: 定理1 若x是齐次线性方程组的一个解,则kx也是它的解,其中k是任意常数。 定理2 若x1,x2是齐次线性方程组的两个解,则x1+x2也是它的解。 定理3 对齐次线性方程组,若r(A)=r 参考资料:百度百科---非齐次线性方程组 非齐次线性方程组的解的三种情况是只有零解,有非零解,有无穷多解。 非齐次线性方程组Ax=b的求解步骤: (1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A) (2)若R(A)=R(B),则进一步将B化为行最简形。 (3)设R(A)=R(B)=r,把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……Cn-r,即可写出含n-r个参数的通解。 简介 对于m个方程、n个未知数的齐次线性方程组,系数矩阵记为A,其秩记为r(A),齐次线性方程组总有零解,不存在无解的情况,且其有非零解的等价条件为,即系数矩阵中的列向量线性相关。而且齐次线性方程组的解向量的线性组合仍然是该线性方程组的解。 基础解系是由个线性无关的解向量构成的,基础解系的解向量个数是确定的,但解向量是不确定的,只要两两之间线性无关即可,基础解系的任意线性组合构成了该齐次线性方程组的一般解,也称通解。 对增广矩阵通过初等行变换化为行最简形矩阵,找到自由未知量,写成通解的形式。 非齐次线性方程组 AX=b,对增广矩阵 (A,b) 用初等行变换化成行梯矩阵,这时可判断方程组解的情况 (无解,唯一解,无穷多解),有解时继续化为行最简形,写出同解方程组,写出方程组的通解 特解+导出组的基础解系的线性组合。 扩展资料: 注意事项: 非齐次方程的求解步骤是对增广矩阵进行初等变换化成阶梯型矩阵,包括齐次的也是一样,然后在系数矩阵中获得一组基础解析,求非齐次方程的一个特解,为了简便计算需要让所有的自由变量的取值等于0,剩下的按照解的结构写出通解。 例如线性非齐次线性方程2x1-2x2+x3-x4+x5=1,x1+2x2-x3+x4-2x5=1,4x1-10x2+5x3-5x4+7x5=1,2x1-14x2+7x3-7x4+11x5=-1。首先需要对非齐次进行化简可以化简成E也可以是阶梯型矩阵。化简成E其实是减少计算量的。 如果按照阶梯型进行求解,那么初等变换得到的系数矩阵是(1,2,-1,1,-2,1),(0,6,-3,3,-5,1),(0,0,0,0,0)还是假设x3,x4,x5等于0,那么特解得到化简计算为12,1,0,0,0,然后进行基础解析的计算,仍然是进行赋值。 参考资料来源:百度百科-非齐次线性方程组非齐次线性方程组的解是什么?
非齐次线性方程组的解法是怎样的?
非齐次线性方程组的解是什么?
简述求解非齐次线性方程组的解的过程。
下一篇
返回列表